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1. INTRODUCTION. A simple dilation theorem for measures asserts that a Hilbert space H 

can be imbedded in a larger Hilbert space I( so that a given H-valued meaure < ( e )  can be 

constructed by the projection of a simpler I(-valued measure $(.I ,  more precisely, 

<(A) =Pg( A), for all A E C (1 .1)  

where C is a fixed u -algebra and P is the orthogonal projection on  K onto  H .  In this 

case q (  .) is called a dilation for  € ( e ) .  

Niemi [ 161 proved the following dilation theorem: Every countably additive H -valued 

measure <(.) on  the Bore1 subsets of a locally compact Hausdorf space R has a countably 

additive orthogonally-scattered dilation $(.) of the form (1 .1) .  noted that the 

existence of Niemi's dilation is an algebraic property and i t  remains true for any bounded 

additive vector valued function on any a-algebra C. 

Chatterji [3 ]  

A popular dilation theorem for an H -valued process zt asserts that one can express zt as 

where yt is a stationary K-valued process and P is the orthogonal projection on  I( 2 H 

onto H . This kind of dilation theorems started by Abreu in [ l ]  as early as 1970, where he  

proved any harnionizable process in the sense of Cramer [2] has a stationary dilation of the 

form ( 1 . 2 ) .  In [14] hliamee and Salehi charaterized all the processes which have stationary 

dilations and showed that this class is exactly the same as the class of harmonizable processes in 

the sense of Rozanov [22] .  Several other authors have established some useful dilation 

theorems [ l e ] ,  [ 151, [ l G ] ,  [ 181, and (191. 

Of course dilation results of the form ( 1 . 1 )  are closely tied with those of the form ( 1 . 2 ) .  

This is because of the well known fact that every H-valued stationary process zt has a spectral 

representation of the form 

zt =I e-''$( d s ) ,  for all t E R ,  (1 .3)  

for some orthogonally scattered H -valued measure q( a ) .  
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I n  (1982)  Rosenberg  [ 2 1 ]  introduced the  followi~ig dilation problcm: L e t  f I I  and H be two 

has a spectral dilation of the  Hi lber t  spaces, does any  L(M,,II)-valued m e s u r e  

form 

T(.) on 

where E ( . )  is a spectral measure on a 1IiIbert space K 2 11, S is a linear operator i n  

L ( M 1 , K )  and P is tlie ortliogonal projection on I\‘ onto I I  . ( \ V e  have stated tliis i n  

slightly different way to m a k e  it  consistent with the o ther  dilation problems (1.1) and ( 1 . 2 ) ) .  

Aniong o the r  iniportxtit resul ts  Iiosctiberg proved an l~quivalciice l‘lieoreiii which states tlie 

equivalence of this probleiii \ v i l l i  the existence of a S-rnajoruit ( t o  be defined in Section 2)  and 

with some  other kinds of dilation problenis. (Note that Rosenberg’s  dilation theorem is a 

getieralization of Nicnii’s clilatioii (1 .1) .  111 f x t ,  i f  we replace 111e I l i l l x r t  S ~ ; L C C  I f ,  i n  

Rosenberg’s dilation, by the complex number : i  C then  we arrive at Niemi’s dilation s i n c e  

L (  (L‘,lI) can be identified with If . I t o s e n b e r g  was also able to show that if  f I I  is a finite 

dimentioiiai I 1  ilbert space, say (I.“ , t h e n  his dila.tion prol~lern lins a positive answer.  

hlakago~i  and Salelii i n  their recent work [ 101 studied Rosetiberg’s question extensi\rely. 

Tlicy first gave an es~ t i ip l e  slioiviiig tliat Rose i i l~e rg~s  t1il:itioti qitcstion is not  v;tlid i n  general, 

and t h e n  proved severa l  u s e f u l  tlieorciiis coriccriiirig t,ltis problem including soiiie rctsults o n  tlie 

posi Live direct ion . 

The m a i n  purpose of this notc is to take o n e  step further anti replace the Iiilbert space fI1 

by a Banach space U , IO see  irliettier a11 L ( 1 1 , I I )  -v;llued me;niire 7’(.) 1 1 s  a dilation of 

the form 

T(  A) =PE( A ) S ,  for a l l  A E C, ( 1.5)  

\+here  E (  .) is again a spectral m e a s u r e  on some Hi lber t  space K 2 ZI, S E L ( B , K )  and P 

is the ortliogonal projection on K orito H . \Ve will sliow that most of the dilation results 

of I iosenberg  [.I] and  hfa.k:igoti a i d  S;iIcIii [ 101 can be cxtendcd IO our  Lhiacti space setting. 
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The study of these L(B ,H) -va lued  measures are essential in the study of Banach space 

valued stochastic processes (for a discussion on these see Section 5 )  which have been already 

introduced and studied by several authors (see for example [4 ]  and [13] ) .  In fact, this has been 

ou r  motivation of studying these kind of measures and their dilations here. 

After  setting up  the notation and preliminary fa& in Section 2, we prove the main part of 

Rosenberg's Equivalence Theorem for the Banach space case in Section 3. In Section 4 we 

extend main dilation theorems of [IO] to o u r  case. Finally in Section 5 after recalling the 

definition of Banach space valued stochastic processes and revealing their close tie with 

L(B,H)-va lued  measures we use the results of Section 4 to obtain some stationary dilation 

results for these stochastic processes, thereby extending the well known dilation theorems for 

simple scalar valued stochastic processes to the Banach space valued stochastic processes. 

2. PRELIMINARIES. In this section we se t  u p  the notation and preliminary facts whi.ch are 

frequently used in the sequel. I t  will be understood that: 

2.1 Notations. 

( a )  C is an algebra, of subsets of a se t  0 , 

(b)  it' denotes a normed vector space over the complex numbers (T with norm being denoted by I 1, 
( c )  B stands for a Ba~ianch space over  @, with norm I 1, 

(d)  H and IC denote Hilbert spaces over (T with inner product ( , ) and norm I 1, 

(e )  W' and W' denote the dual and adjoint space of W respectively, and the action of any functional 

f on W a t s o m e  z E W i s d e n o t e d b y  f ( z )  = < z , f  >, 

( f )  For any two normed linear spaces Wl and W2, L ( W1, "2) denotes the space of all continuous 

linear operators from 1Y, into with the norm I 1. 
2.2 REMARK. The distinction between the adp in  space W' and the dual space W' is 

important here: W' is the space of all continuous linear functions on W while W *  is the 

space of all continuous conjugate linear functionals on W .  i.e. 
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w* = {fn f ( *) E W'}. 

For any A E L (  W1, W,) one can define the adjoint A *  and the transpose A' of A as follows 

A * :  W; -+ W;;  A * ( j )  = j o A ;  for all  j E W;,  

A': W ;  -+ W;;  A'( f )  = f o A ;  for all f E Wb. 

Thus, again A' and A' are in general different. However ]A' I = W'I  = I.1 I. 

2.3 DEFINITION. A n  operator M in L(B ,B ' )  is called hermitian if for all z, y E B ,  

<z, M y >  = < y ,  M z  >, and it is called nonnegative ( in  symbols 2 0 ) if i t  is hermitian and 

for all z E B ,  <z, M z  > 2 0. The se t  of all nonnegative operators from B into B* is 

denoted by L+(B,B ' ) .  

2.4 DEFINITION. Let  be a finitely additive (f.a.) W-valued measure defined on E. 

The semi-variation I I rn  I I of m is defined to be 

where n ( R  ) denotes the se t  of all C -partitions of R . Note that in general llmll E [0 ,00] ,  in 

case llmll < 00; the measure m is said to have finite semi-variation. The space of all W 

-valued f.a. measures o n  C with finite semi-variation is denoted by M (  W), Clearly 11 11 

provides a norm on  AI( \ V ) .  In fact, if W is a Banach space then (M(  W),  11 11) becomes a 

Banach space as well (see [ 51 , p. 53). 

\Ve denote by S( W )  the s e t  of all Z-simple, W-valued functions of the form 

define (cf. (51, 5 7)  

To any f E S( W )  besides the familiar s u p n o r m ,  namely 
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we associate another norm defined by 

The following lemma (see [lo, Lemma 2.4 & Remark 3.7) ) shows that I Io5 is actually a 

norm on  S( W )  and gives some of its further properties. 

2.8 LEMMA. With the notation just described 

(a) I loD is a norm on S( W )  , 

( b )  The mapping m - 1 < * , d m  > is a linear isometry from ( M (  W ' ) ,  11 11) onto (S( W ) ,  I l w ) ' ,  

( 4  For every f E S( W )  we h w e  I/ lrrp 5 I/ loo, 
( d )  When IY is finite dimenstional these two norms I lrrp and I loo on S(  W )  are equivalent 

but  no t  in general. 

2.7 LEMMA. L e t  T be an L(B,H)-va lued  f.a. meaSure on  C. Then 

(4  

IIT(9Il = S U P  { I I W z  II, z E B ,  1% I 5  1}=SuP {IIT(*)'Y It, Y E H ,  IY I 5  1)  

- < 48'Up {IT( A) 1: A E E}, 

where Ill!'(.) 11, llT(.)z 1 1  and IIT(.)'y(l denote the semi-variation of the measures T(.), 

T( .) z and T( *) '2 respectively. 

(b)  If moreover C is a a-algebra and T is weakly countably additive (w.c.a.) then 

sup {IT(A) I: A €  C} < 00 

Proof. (a)  follows from the fact that  for any operator T E L ( B , H )  

IT/ S U P  { I T Z  1: Z E E, IZ I 5 I }  

= SUP {( Tz,y):z E B ,  Y E H ,  Iz I 5 1, IY I5 1). 

( b )  

known that 

For each z E B and y E H consider the complex-valued measure ( T( -)z,y). It is well 
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. sup{)(T(A)z ,y)I:  A €  C : } = C ( z , y )  < 03. 

Now for each fixed 

functionals on H and conclude that 

x apply uniform bounded principle to the s e t  {( T( A))z ,*):  A E C }  of 

s.up{IT(A)z I: A €  C}=C(z)  < 03, for all x € B. 

NOW using this, one can apply the uniform boundedness principle again, this time to the se t  

{ T ( A ) :  A €  C} of operators in L ( B , H )  to get 8up{lT(A) I} < 03. 

n 

1 4  
L e t  T be a f.a. L (  \VI, W,) -valued meawre on E. For each f =.E la, xi in S(  W , )  

one can define (cf. 151, 5 7 ). 

I j d T  = i=l 5 T(A,.)zi. 

This integral provides a linear operator @T: S( W,) -+ W ,  defined by a*( j )  =s j d T  

2.8 LEMMA. [ lo ] .  Le t  T be a f.a. L (  W1,W2)-valued measure on  C . Then 

@*: (S( W , ) ,  I Iw) + W ,  is continuous if T has a finite semi-variation IITll. If this is the 

case we further have I @ T  I =llTll. 

2.10 REMARK. As we know the se t  M ( L ( B , B ' ) )  of all L(B,B')-valued f.a. measures 

with finite semi-variation equipped with the semi-variation norm is a Banach space. On the 

other hand L ( B , B ' )  is isometric to the conjugate space ( B  @ B)'  of the tensor product 

B @ B equipped with the projective norm ([25], p. 190). So M ( L ( B , B ' ) )  can be 

identified with M ( ( B  @ B ) ' ) .  But  by L e m m a  2.6, M ( ( B  @ B ) ' )  is isomorphic to 

( S ( B  @ B ) ,  I lw)'.  Hence h l ( L ( B , B ' ) )  is isomorphic to ( S ( B  @ B ) ,  I loo)' and for any 

T E M( L (  B,B')  and i ts  isomorph of 11, in (S( B 8 B ) ,  I loo) ' we have 

2.11 DEFINITION. (a) A f.a. L ( I ( , K )  -valued measure E defined on an algebra C is 

called a f.a. spectral measure in K i f  ( i )  for every A E C ;  E(  A) is an orthogonal projection 
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in 

K ,  (ii) E ( A l ) E ( & )  =0, for every pair AI and 4 of disjoint sets in C . If in addition C is a 

4 -algebra and E is w.c.a. then E is called a c.a. spectral measure or simply a spectral 

measure. 

(b )  We say that a f.a. (w.c.a.) measure T: C -+ L ( B , H )  has a f.a. spectral dilation 

a f.a. spectral dilation (spectral (spectral dilation) if there exist a Hilbert space 

dilation ) E( .) in K , and an operator S E L ( B , K )  such that 

K 2 H ,  

T(  A) =PE( A ) S ,  for all A E C, 

where P is the projection of K onto H. 

(c )  We say that a f.a. (w.c.a.) measure T defined on  the algebra (a-algebra) C with 

values in L ( B , H )  has a f.a. (w.c.a.) %mapran t  llf if hl is f.a. (w.c.a.) L+(B,B')-valued 

measure on C such that 

If C is a a-algebra and ( in a c.a. H-valued measure on C then the integral J f d t  is 

well defined for all bounded measurable complex-valued functions j (cf. [SI, IV. 10 or [5] 6 

7 ). Now if T is a w.c.a. L(B,H)-va lued  measure on  C then i t  is known that i t  is strongly 

c.a. (161, IV 10.2).  So for each z E B ,  the H -valued measure T(.)z is c.a. and hence 

1 fd( Tz) is defined. One can then define J fdT by 

( I  f d T ) z  =J  fd( Tz), z E B. (3 .12)  

For this integral one can easily check that 

fdTl 5 117'1 I If lrrp, for all bounded funcf ions  f ,  (2 .13)  

CJ( J f d T )  V =J / d (  CJTV), for all bounded junc t ions  f , (2 .14)  

(I fd( Tz),y) =I I d (  Tz,y), for all z E B ,  y E H. (2 .15)  
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Finally we will need the following lemmas in the proof of Theorem 4.4. 

2.16 LEMMA. 1211 Let  v(.) be a f.a. nonnegative real-valued m e s u r e  on a u-algebra C. 

Define for each A €  C 

00 

p( A) =inj{ C v(Ai); Ai E C, {Ai} ti a countable partition for A}. 
id 

Then p ( A )  is a c.a. nonnegative real-valued measure on  C such that 

0 5 p(A)  5 .(A) 5 .(a) < 00. 

Next  L e m m a  is the extension of Jordan-Von Neuman Theorem for the Banach space setting 

(see p. 124 in [?7] and L e m m a A . 2  in [ a l l  ).  

2.17 LEMMA. Jordan-Von Neuman. Le t  B be a Banach space over @ and le t  R ( . )  be a 

nonnegative real-valued function defined on B such that 

( i )  R( . ) 'P  is aseminorm,  

(ii) R (  . ) ' j 2  satisfies the parallelogram law i.e. 

R ( z + y )  + R ( z - y )  = 2 R ( z )  + 2 R ( y ) ,  for all 2, y E B, 

(i i i )  there exists K > 0 such that R (  z)  5 I< Iz I?, for all z E B. 

Then ( a )  

functional T(*,*) on B X B to C. i.e. 

R( -) can  be recovered from a unique bounded nonnegative hermitian sesquilinear 

( b )  There exists a unique bounded nonnegative hermitian linear operator A on B to B' 

such that IA 15 K and T(z,y)  = < y , A z > ,  for all 2, y E 8. 

prooL. (a) For each 2, y E B define T(z,y) by 

Then follow the proof of Jordan-Von Neuman Theorem [27 ,  p. 1241 to see that  T(*;) is a 



- 1 0 -  

nonnegative hermitian sesquilinear function on  B X B  such that R ( z )  =T(z,z) for all 

z E B .  Then using Schwarz inequality for T we get (T(z,y) 15 R ( Z ) ' / ' R ( ~ ) ~ B  

5 K Iz 1 Iy 1, for all 2, y E B .  

(b )  For each z in B define g,(.) on B to @ b y  g,(y) =T(z,y), for  all y E B ,  clearly 

g, is conjugate linear. Since 

I s ~ ( Y ) I = I ~ ( ~ , Y ) l < ~ ~ I ~ l  I Y I  (by 2.181, 

we see that gz is also bounded. So gz E B'.  In fact 

(9, I 5 Ir' 12 1, for all z E B. (2.19) 

Define A :  B - B' by Az = g r  then one can easily see that A is linear. A is also 

bounded. In fact by (2.19) we have IA I 1. I C .  Since we can write 

< y , A z >  =<y,g,> =g,(y) =T(z,y), for  all 2, Y E  B ,  

the proof is complete. 

Having proved Jordan-Von Neuman L e m m a  for our Banach space setting the proof of the 

following lemma is exactly similar to its Hilbert space version in [21] and hence omitted. 

2.20 LEMMA . Let  B be a Banach space and let M ( * )  be a f.a. L+(B,B')-valued measure 

on C. Le t  for each z E B ,  v , ( . )  = < z , M ( * ) z >  (which is clearly a f.a. nonnegative real- 

valued measure on be the nonnegative real- valued 

measure o n  C corresponding to Y,( .) as in Lemma 2.16. Then 

C ) and le t  for each z E B ,  p , ( . )  

(a) for each A E C there is a unique operator F(  A) in L+( B,B')  such that 

<z, F ( A ) z >  = p , ( A ) ,  for each z E B. 

(b)  the se t  function F(  .) is w.c.a. on C and 

0 A F ( A )  M ( A ) &  N ( n ) ,  for each A E  C. 

3. THE EQUIVALENCE THEOREM. In this section we extend a very useful result of 
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Rosenburg [31] namely his Equivalence Theorem for L(H1,H)-va lued  measures to the case of 

L(B,H)-va lued  measures. Our interest in L (B,H)-valued mesures is because of their 

essential role in the integral represntation for Banach space valued stochastic processes (For 

some more precise comments see the beginning pragraph of Section 5). The proof of our  

Equivalence Theorem 3.3 goes along the same lines as the proof of Rosenberg's Equivalence 

Theorem. 

We start by proving the following Lemma. 

3.1 LEMMA . L e t  T be any L(B,H)-va lued  measure and M be any L(B,B')-valued 

measure on C . Consider the kernel K on C X C  defined by 

K(h,A') = M ( A n  A') - T(A')'T(A), A, A '€  C. 

Then, (a) for any A,, . . . ,4,, E C and any zl, . . . ,zn E B we have 

R n n 

(b )  hi is a ? -maprant  for T iff the kernel I<( .;) is a positive definite kernel on C x C 

(in the sense of Definition 2.5 in [12 ] ) .  

u. (a) is clear. ( b )  Suppose M is a 2-majorant for T then by Lemma 2.6 in 1121 it  

suffices to show that the scalar-valued kernel k on (C X B )  x ( C  X B )  defined by 

k [ ( A , z ) ,  ( A',z')] = <z',K( A,A')z> is a positive definite kernel. For any e,, . . . , c, in e ,  

and any aI = ( 4 , , y l )  ,..., a, =(A,,y,)  in C X B  we have 

n n 



~~ 

: . 
- 1 2 -  

and this is nonnegative (since A1 is a 2-maprant for T ). Now to check the conjugate 

symmetry property of k on (CXB) X(CXB) we note that for any cr =(A,z )  E C X B and 

a' =(A',z') E C X B  we have 

k(cr ,a ' )  =<z', K(A,A')z> =<z' ,M(&A')z> - <z',T(A')'T(A)z> 

<z ,  M(M A')z'> - ( T(A')z', T(A)z) ,  

this is because Al(M A') is nonnegative and hence hermitian (see Definition 2.11 (c )  and 

Definition 2.3). W e  can further write 

k(a ,a ' )  = < z , M ( A h A ) z ' >  - ( T(A)z,T(A')z') 

= < z , M ( A h A ) z ' >  - <z,T(A)*T(A')z'> = k(a',a) . 

This completes the proof of one way. Proof of the other way is similar. 

3.2 EQUIVALENCE THEOREM. (a) A f.a. L(B,H)-va lued  measure T on an algebra C 

has a f.a. spectral dilation iff i t  has a f.a. ?-majorant. 

(b)  A w.c.a. L (B,H)-valued measure T on a a-algebra C has a spectral dilation iff i t  has 

a w.c.a. %mapranat.  

Proof. We will just prove part (b) since the proof of (a )  is essentially the same. Suppose T 

has a w.f.a. spectral dilation i.e. suppose there exists a Hilbert space K 2 H and a spectral 

measure E ( . )  in K such that 

T( A) = PE( A) S; for all A E C, 

where P is the projection of K onto H and S in an operator in L ( B , K ) .  Then for every 

collection zl, . . . ,zn in B and every collection A,, . . . ,An  in C we can write 

One can then easily check that A i ( * )  = S * E ( * ) S  serves as a w.c.a. 2-maprant for T. TO see 

the other  way suppose T has a w.c.a. ?-majorant Af .  Define the kernel I ( ( . ; )  as in Lemma 
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3.1. By this Lemma Ir'(-,.) is a positive definite kernel on C X C  in the sense of Definition 

2.5 [ 121. Thus one can apply The Kernel Theorem (see Theorem 2.10 in [ 121) to conclude that 

there exists a Hilbert space H I  and an L(B, l i l ) -va lued  function R (  *) on C such that 

K(A,Af) =R(Af ) 'R(A) .  

Now take I< =H 8 H ,  and define 

identified H with H €3 {0} in K ) .  Then for any z, z' E B ,  

?': B - K by ?'( A) = T( A) + R ( A ) .  (Here we have 

<z, ?(A) ' ?(A') d> =( ?( A) z, ?( A ~ I  Z f ) K  =( T( A) z, T( AI) z') + ( R  ( A) 2 ,R ( AI) 

= <z,T(A) 'T(A' )z '>  + <z ,R(A) 'R(A ' ) z '>  =<z,[ T(A)'T(A') + K(A',A)]z '>.  

This means ?'(A) '?'(A') = M ( M  Af). Now, since M is w.c.a. one  can adjust the proof of 

Lemma 8.6 in [ 111 to conclude that ?' is strongly countably additive. Now clearly we have 

(3 .3)  T( A) =P?'( A), for each A E E. 

Let  E ( A )  be the projection on Ir' onto the subspace spanned by {?'(A')z: A ' €  C, 

A' C A, z E B}. Then one can show that E( a )  is a spectral measure in K and 

?'(A) =E(A)? ' (O) ,  for d l  A €  C. 

Hence T(A) =P?(A) =PE(A)?(O) i .e .  T(A) = P E ( A ) S ,  with S =? ' (O) .  (Here, to 

compete the proofs, the ideas of section 5 in 1111 are needed. For more details see pages 443- 

444 there). 

4. SPECTRAL DILATION. In this section we study the existence of dilations for 

L (B,H)-valued measures. When B is simply the complex number C, one is just in the case 

of H-valued measures (Note that L ( @,H) G H ) ,  and for this case it is shown by Niemi [ 181 

that: A f.a. H-valued measured T with finite semi- variation has a f.a. spectral dilation iff 

there exists some constant C such that for every collection fh of scalar valued simple 

f u n c tio ns 
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On the other hand fortunately Grothendieck’s inequality guarantees the validity of (4.1), Thus 

each L (  C , H ) (  r H ) - v a l u e d  measure with finite semi-variation has a spectral dilation. 

Rosenberg [21] among other important results showed that when @ is replaced by any finite 

dimensional Hilbert, space say a‘‘ still the problem of dilation has a positive answer, namely 

any L (  QY,H)-valued measure T has a spectral dilation. When this space is replaed by any 

Hilbert space H, the problem is extensively studied by Mahagan and Salehi [IO] and they 

were able to show that in general an L(H1,H)-va lued  measure does not  have to have aspectral  

dilation. They then continued to study conditions which guarantee the existence of a dilation 

and in particular generalized Niemi’s result mentioned above in the following way: 

4.2 THEOREM. (a) L e t  T be a f.a. L(H, ,H)-va lued  measure on an algebra C . Then T 

has a f.a. spectral dilation if€ there exists a constant C such that for every collection of simple 

a 

1 4  
functions j k  = ,C 14zifi in S( H , )  

(b)  If 

condition for T to have aspectral dilation. 

T is a w.c.a. measure on  a a-algebra E, then (4.3) is a necessary and sufficient 

Here in this section we first extend the above criteria for dilatability of L (  @,If)-valued and 

L ( H1,H)-valued measures to the case of L ( Ifl ,H)-valued measures, where B is any Banach 

space (Theorem 4.4) and then use this to get a sufficient condition for dilatability. 

4.4 THEOREM. (a) Let  T be a f.a. L(B,H)-va lued  measure defined on  an algebra C. 

Then T has a f.a. dilation if€ there exists a constant C such that for all collection of simple 

functions jk = c ln,zifi in S( B )  
N 

id 
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n N  n N  

(b)  If T is a w.c.a. measure on a o-algebra C. Then (4 .5)  is necessary and sufficient for T 

to have a spectral dilation. 

P7oof. For any two simple functions f and g in S ( B )  we define a new simple funciton 

N N 
f o g in S(B @ B )  as follows: suppose f = C 1 A , ~ i  and g =i% 1 ~ ~ i  we let  

i=l 

N 

i=l 
f o g = C l ~ , z i  8 yi. Since by Remark 3.10 we know that ( B  @ B)'  =L(B ,B ' )  we have 

Using this condition (4.5) can be reformulated as 

Now if T has a f.a. dilation then by the Equivalence Theorem 3.3 the measure T mus t  have 

a 2-maprant 121. Thus (4 .5 )  holds with C = IIM 1 1  < 00 (Note that  any 2-maprant is 

necessarly of finite semi-variation). This completes the proof of one way of (a). For the other  

way we assume that (4.5) or equivalently (4.7) holds and will prove that T has a f.a. 2- 

mapran t  which in view of The Equivalence Theorem completes the proof. 

Consider the se t  U defined by 

1 from (4 .7 )  i t  follows that CJ is a convex se t  in 

S(B 8 B) it follows from Hahn-Banach Theorem ([%I],  Theorem 3.4) and L e m m a  2.10 that 

there exists some real number 7 and a f.a. se t  function G E M ( L ( B , B ' ) )  with IIG I ]  = 1  

such that for every 4 ,  11, E S( B 63 B') with 

10 loo 3 z, for every 4 E U. Since 

1 111, loo 5 - we have C E U and 



<'"> 1<+,C> I =Re<cr+,G> and where < + , G >  =/ <q!J,dG>. Since for Q = 
I<$lG> I '  

G(A) + G(A)'J 
Thus we have Re  < + , G >  2 - for all 4 E U. NOW put  M(A) = C '  2 

1 

A E C where J is the standard linear isomorphism from B into B" defined by 

<z* ,Jz>  = < z , z * > l  for all z E B ,  z* E B'. (4.8) 

Note that G(A')J 

belong to L ( B , B ' )  hence M(A) E L ( B , B ' ) ,  for each A €  C .  Thus M is an L(B ,B*) -  

C(A): B - B* and hence C(A)': B"* B'. Thus both G(A) and 

valued measure. Furthermore M E M ( L ( B , B ' ) ) ,  in fact, one can easilty check that 

IlMII 5 1. A4 is also hermitian valued (see Definition 2.3)'  because for any z and y in B 

we have 

< y ,  G( A) > + < y , C( A) JZ > - < y , G( A) z >+ < G( A) y , Jz > 
2 2 

- <yjM(A)z>  

< y , C( A) z > + < z , G( A) y > - < y , G( A) z > +< 2, G( A) y > 
2 2 

by (4.8) = - 

Thus 

(4.9) = < z , M (  A)y >. < y , G ( A ) z >  + < z , G ( A ) y >  
2 < y , M ( A ) z >  = 

U 

Now for any collection of f,, . . . , f, in S( B) with C I/ f k  dTI2 > 0 using (4.9) we can 
k = 4  

write 

which implies that  



- 1 7 -  

(4.10) 

To prove that ll.i is actually a 2-majorant for T we have to show that (4.9) remains valid in 

the other case namely when C I$ f k  dTI2 = O .  This can be proved exactly as the proof of this 
n 

k 4  

fact in Theorem 4.3 in [ 101 and hence omitted. 

( b )  Since T is w.c.a. and hence of course f.a. by part (a) there exist a f.a. 2-maprant  M 

such that 

ll n 

From L e m m a  2.20 i t  follows that there exists a w.c.8. measure F on C such that for all 

z E B, A €  C 

00 

<z, F ( A ) z >  = i n f { C  < z , M ( A i ) z > :  {A’} b a countuble partition for A}. 
i=l 

L e t  Al, . . . ,A,, be some fixed disjoint elements of C and z l ,  . . . , z, some fixed elements 

in B . Given any 6 > 0 let  {Ai: i =1,2, ...,} be countable partition of A, such that 

Since T is w.c.a., and hence strongly countably additive ([SI IV. 10.1 ), T(*)z is countably 

additive and we can write 

so 

Since 6 is arbitrary, this implies that  M is a w.c.a. 2-maprant for T. Thus by The 

Equivalence Theroem 3.2, T has a spectral dilation. 
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The ideas of the proof of last theorem are similar to the proof of the proof of Theorem 4.2, 

as given in [ lo ] ,  which goes along the same lines as the proof of Pietsch's factorization theorem 

in [9] .  However, the details of the proof, as one can see from the proof presented here, are 

quite different. 

Using the main result of this section, namely Theorem 4.4, we can provide some sufficient 

conditions for a L(B ,H) -va lued  measure T to have spectral dilation. The following theorem 

extends a result in [ l o ]  to the Banach space setting. The proof in [ lo]  is quite Hilbertian and 

depends on taking an orthonormal basis in some Hilbert space which is now replaced by the 

h a c h  space B ,  which does not  have such a nice basis. 

We start with the following definition (cf .  [ 261, [ 101 ). 

lllTlll = n o r m  o f  the operator @T: ( S ( B ) ,  I I,,J + H 

We will need the following lemma given in [IO] (cf. also [ a s ] ) .  

4.13 LEMMA . Let  H be a Hilbert space. There exists a constant C such that for  every 

n, 1n E N ;  1 1 ,  . . . , t,,, E c; X I ,  . . . ,z, E H ,  

where S, is the unit sphere of the n-dimensional Euclidean space P, and p ,  is the 

normalized rotationaly invariant measure on S,, . For any complex number z ,  sgn z is equal 

Z to - if z # 0 and 0 if z =O.  
12 I 

4.14 THEOREM . Let  T be a f.a. (w.c.a.) L(B,H)-va lued  measure on an algebra (a u- 

algebra) C . If lllTlll < 00 or equivalenly @ r  as an operator from ( S ( B ) ,  I into H 
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is bounded then T is dilatable 

Proof. Let  All . . . , A N  be any disjoint nonempty sets in E, x/, k =1 ,  ..., n ;  i =1,  ..., N be 

any vectors in B we will prove that (4.5) holds. Take a normal basis e l ,  . . . , e r  for 

r 

@{xi; k i = 1  ,... , N ;  k = 1  ,... ,n}. Then writing xi" = C 
P 4  

k we have 

1 2  where ti,p =( ai,p, q P ,  . . . , E V. Now apply Lemma 4.13 to get 

Le t  

Then 

(4 .15)  

Now using Hahn-Banach theorem there exist linear functional e; E B' such that e;( e,) =6,. 

Then a t p  =<x/,eP*> and (4.15) can be rewritten as 

Let's introduce the linear operator S: B - B' by 

r 

SZ = r  C < x  e'>e;l for all x E B. 
p 4  ' P  

(4.lG) 

I 

Then (4.lG) becomes lyi(s) l2 5 C <xi,  Sz!> . Thus we have 
k =1 
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Let  io be the integer between 1 and N which gives the s u p  on  the right hand side of 

(4.17). Then 

This yields 

n 

k 4  
c 

n 
because C 

N n  
<zt, Sz()> =.E C <z/, Fo(A,)zi)>, for  an L(B,B')-valued measure FO 

k =I 14 k=1 

with the property 

Fo(Aio) =S and Fo(Ai)  =0, for all i # io. 

So we have proved (4.5). 

Note that as shown in [ 101 this condition I I (T ( 1  I < 00 is n o t  necessary for T to have a 

dilation even in Hilbert space case. 

5. DILATION OF BANACH SPACE VALUED HARMONIZABLE PROCESSES. In this 

section we will first review the definition of Banach space valued random variables and 

processes and se t  up  the necessary definition and preliminary facts about Banach space valued 

V-bounded, harmonizable and stationary processes. Then we will apply Theorem 4.4 to study 

the stationary dilations of banach space valued harmonizable processes thereby extending the 

well known dilation theorems for scalar valued and Hilbert space valued processes ( [  11, [ 14) , 

[IO], [ 161, [ 181, [ 191) to the Banach space valued processes. 

L e t  B be a Banach space and X be a B-valued function defined on a probability space 

( 0  , C , P ) .  \Ve say X is a Banach space valued random variable if <X,z'> is measurable for  
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each z 0  E B'. A Banach space valued random variable X is called of second order if 

I I<X,z'> I2dP < cx for each z '  E B'.i.e. <X,z '> E L 2 ( Q  ,C ,P) ,  for all 2' E B'. 

Thus for each second order Banach space valued random variable X we can define an operator 

X :  B' * L 2 ( Q  ,C,P) by X z O  =<X,z'>. Thus every second order Banach space valued 

random variable X gives an operator, namely X from B' into H = L 2 ( Q  , C , P ) .  Hence one 

can think of a second order Banach space valued random variable as an operator in L ( B , H ) ,  

where B is a Banach space and H is a Hilbert space. 

With this background by a Banach space valued stochastic process X,, t E R we mean a 

function X,: R -+ L ( B , H )  where H is a Hilbert space and B is a Banach space, and from 

now on  we will call it simply an L (B,H)-valued process. 

Let's now recall the definition of diflerent type of usual scalar valued second order 

stochastic processes (which are also interpreted as H-valued processes 1231). 

6.1 DEFINITlON. A n  H-valued process zt:  R -+ H is called 

(a) Stationary (see 123)) if its correlation function 

t - 8 ,  i.e. 

7 ( t , 8 )  =(z,,z,) is a function of only 

r( t , S )  =r( t- 8 , 0 ) ,  for d l  t , 6  E R .  

(b )  harmonizable (see [?? I  ) if its correlation function is of the form 

where u is a positive definite bimeasure such that 

(c) 

every I$ E L ' ( R , @  we have 

V-bounded (see [2]  ), if i t  is continuous and there exists a constant C such that for 



where the integral is in sense of Bachner [8] , and L 1 ( R , Q  is the space of complex-valued 

Lebesgue integrable functions on R , and $ is the Fourier transform of 4 . 

The following result is well known. I t  has been extended to the L(H1,H)-va lued  processes 

( [  101 Theorem 6.12 ) and we will extend it in a similar fashion to ou r  Banach space setting. 

5.2 THEOREM . ( [ lG] ,  [14]) .  For, any H-valued process zt ,  t E R the following are 

equivalent 

( i )  zt is harmonizable. 

(ii) zt is V-bounded 

(iii) there exists an H-valued measure < on the Bore1 subsets of R such that  

zt =I e - d ' < ( d s ) ,  for all t E R. 

(iv) there exists a Hilbert space IC 2 H and a IC-valued stationary process yt such that 

zt =Pyt ;  for a l l  t E R ,  

where P is the projection on IC onto H . (For another version of harmonizability which is 

stronger see [ 11 , [2] ) .  

Definition 5.1 and comments of the beginning paragraph of this section suggest the 

following definition (see also [ 71, [ 41, [ 131 ) ,  

6.3 DEFIM'IION. A n  L ( B  ,H)-valued process X ,  is said to be 

(a) stationary if for each z E B the H-valued process X,z is stationary, 

(b )  harmonizable if for each z E B the H-valued process X,z is harmonizable 

(c)  V-bounded if for each z E E the H-valued process is V-bounded. 

The proof of the following theorem is similar to that of Theorem 6.12 in [ lo] for the Hilbert 

space setting and hence omitted. 
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5.4 THEOREM. Let  X, be an L(B,H)-valued process and le t  the operator 

r( t , e )  =X,'X,: B -+ B' be its correlation function. The following are equivalent 

( i )  X, is harmonizable 

(ii) X, is V-bounded 

(iii) There exists a w.c.a. L(B,H)-va lued  measure 2 such that 

.\; =I e- ' *Z(  d s ) ,  for all t E R. 

6.5. REMARK. Last result partially extends the Theorem 5.2 to our  case of Banach space 

valued stochastic processes. However, part (iv) of Theorem 5.2 which is probably the most 

interesting part is missing here in Theorem 5.4. I t  turns o u t  that these definitions of 

harmonizablity and V-boundedness are not  strong enough to assure the existence of a 

stationary dilation. (For a counter example see Theorem 6.12 (B) in [ lo]) .  This problem was 

expected because the problem of having a stationary dilation for harmonizable L(B,H)-va lued  

processes has a close tie with that of spectral dilation for L(B,H)-va lued  measures which was 

the subject of o u r  study in Sections 3 AI 4. As we recall from Theorem 4.14, for instance, in 

order to assure the existence of a spectral dilation there, we had to add an extra assumption 

(relative to the usual case of H-valued measures) namely I I IT1 I I < 00. This means that to 

get the existence of stationary dilation, namely a part ( iv),  we must  impose similar extra 

assumptions on  the other parts. 

Here is the main result of this section 

6.6 THEOREM. L e t  X, be an L(B,H)-va lued  process and let  I ' ( t , s )  =x'x: B + B' be 

its correlation function. 

(a) The following are equivalent ( i )  X, is harmonizable and the spectral measure 2 in a 

harmonic representation of -,U, (see Theorem 5.4 (i i i)) ,  
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has the property I 112 1 I I < 03, 

(ii) X, is V-bounded and there exists a constant C such that 

I l 4 4 ( t ) d t l <  C161rrp; for 411 4 E WW), 

where L ' ( R , B )  stands for the space of all B-valued Bochner integrable functions w.r.t. the 

Lebesgue measure, J ( 8 )  =I e - " 4 (  t ) d t  is the Fourier transform of 4 in L ' ( R , B ) ,  and all 

integrals are in Bochner sense. 

(b )  If the L(B ,H) -va lued  process X, satisfies ( i )  or (ii) then there exists a Hilbert space 

K 1 H and an L(B,K) -va lued  stationary process such that 

X, =PY,, for all t E R ,  

where P is the projectionon K onto H . 

P700f . The proof of ( i )  -e+ (ii) is similar to that of Theorem 6.17 in [ lo] and just needs 

some modifications. To see ( i )  => ( i i ) ,  suppose X, =I e- '*Z(  d s )  with I 1.2 1 1 1  < 03. It 

follows from Theorem 4.14 that the L(B,H)- valued w.c.a. measure 2 has a spectral 

dilation. That is to say, there exists a Hilbert space K 1 H and S E L ( B , K )  such that 

Z( A) =PE( A) S,  for all Bore1 subsets, A of R , 

where P is the projection on K onto tl . Let  1; =I e - i t ' E ( d s ) S ,  t E R .  Then one can 

see that is stationary (see 141, 1131 ) and by (2.14) X, = P x  for all t E R .  

5.7 REMARK . One can easily construct an L(B ,H) -va lued  process 4 which has a 

stationary dilation but does no t  satisfy condition ( (  i) or equivalently (i i))  of last theorem. It is 

interesting to charactrize the class of L (B ,H) -va lued  or even L ( H I , H ) -  valued processes 

which have stationary dilations. 
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